

Tristan Ladrech

Intel Corporation

Stanislas Odinot

Intel Corporation

Marc Gaucheron

Intel Corporation

Ludovic Sauge

Intel Corporation

How to maximize
inference performance
with TensorFlow on Intel®
platforms

Deep learning is a fast-growing discipline and a lively ecosystem at many levels. New

algorithms, neural networks topologies and software stacks are created daily. As in other

new domains, feature development is the priority. Later, when performance is required,

setting up more hardware for acceleration is frequently the easiest way to address the

problem. Achieving performance to keep pace with this rapid innovation is exciting but

raises certain concerns for data scientists.

Even in the specific field of deep learning inference processing, identifying the right

hardware for batch image classification or natural language processing, for example, can

be challenging. Learning how to squeeze performance out of this hardware adds even

more complexity and is often a lengthy process. Lastly, although these difficulties can be

overcome, when the solution is applied to a large-scale inferencing project, the total cost

can quickly become prohibitive, even in the cloud.

To help resolve most of these problems, this white paper offers data scientists a closer

look at a computing resource widely available at various price points: the CPU (central

processing unit). Since well-known deep learning frameworks like TensorFlow have

become available, tremendous progress has been made to optimize their use on CPUs.

The latest Intel processors also bring new AI capabilities to accelerate inferencing

processing specifically.

By following a few simple steps described in this document a data scientist can

expect significant levels of performance on CPUs with very little impact on source

code or accuracy, but huge advantages in cost savings and scaling. In this paper we

take the inference on a ResNet-50 and a synthetic dataset as an example, as it is a

well-known topology.

WHITE PAPER

Artificial Intelligence
Deep Learning
Inference
Linux
TensorFlow
Anaconda
Python

White paper | Maximize inference for Intel platforms

 2

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. Your costs and results may vary.

No product or component can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware,
software, or configuration will affect actual performance. For more complete information about performance and
benchmark results, visit http://www.intel.com/benchmarks .

Intel Advanced Vector Extensions (Intel AVX) provides higher throughput to certain processor operations. Due to
varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than
the rated frequency and b) some parts with Intel Turbo Boost Technology 2.0 to not achieve any or maximum turbo
frequencies. Performance varies depending on hardware, software, and system configuration and you can learn
more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that
are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and
other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on
microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

http://www.intel.com/
http://www.intel.com/go/turbo

White paper | Maximize inference for Intel platforms

 3

Table of Contents
 What to expect ...4

 What you need to know ...6

 Quick start ... 11

 Set up your environment .. 14

 Tune your TensorFlow code ... 17

 Optimize your neural network ... 18

 Execute your code multiple times .. 21

 Quantization ... 29

 Performance checking ... 34

 Resources .. 37

 Table of figures ... 38

 Appendices ... 39

White paper | Maximize inference for Intel platforms

 4

 What to expect

Introduction

Maximizing inference performance with TensorFlow on Intel platforms requires the following

steps, each step successively adding more performance:

1. Select the best CPU

2. Set up an optimized version of TensorFlow

3. Make your Python code “aware” of your processor and server specifications

4. Optimize your model (pruning, constant folding, and batch normalization)

5. Run multiple inference instances in parallel to maximize your CPU performance

6. Quantize your model to achieve even greater model performance.

In this section (Section 1) of the whitepaper, we briefly present the level of performance you

should expect when doing inference on ResNet-50 and a synthetic dataset with Python code. If you are

convinced of the possibility of rapid performance improvement, we recommend that you review certain

basic principles about your CPU and what you need to know on TensorFlow in Section 2.

You can also jump directly into Section 3 where you can try out a short procedure to achieve

high levels of performance on any CPU. Section 3 is basically a tutorial with the goal of enabling you to

experiment quickly, before diving into deeper understanding. Each step of the tutorial has its own

dedicated section with further information. Moreover, some optimizations like multi-instancing and

quantization are too complex for quick experimentation: in these cases, refer to the dedicated sections.

Lastly, if these experimentations motivate you to increase your knowledge of optimizing

inference workloads to run on CPUs, we encourage you to read all the other sections.

Please note that this tutorial uses ResNet-50 as an example to show you how to apply these

optimizations.

White paper | Maximize inference for Intel platforms

 5

Optimizing inference on Intel processors

 By following the recommendations laid out in this whitepaper you can expect a significant

performance boost for your inference processing workload. This is illustrated below with ResNet-50

using a synthetic ImageNet dataset. The performance indicated in the column on the right is achievable

by using 2nd Generation Intel® Xeon® Scalable Processors, which support Intel® DL Boost technology.

Yet even on older generation CPUs, there are still possibilities for much greater performance from

software.

Figure 1 - What you can expect from the different optimizations. A: AVX-512 activated, M: oneDNN (formerly MKL-

DNN) enabled, TG: Transform Graph optimized model, O: intra-threads and inter-threads optimized, I: INT8

quantized, MU: Multiple instances launched

Configuration 1 (90 img/s): this is what you can expect running inference on a synthetic dataset

in commonly occurring conditions:

• oneDNN (formerly MKL-DNN) enabled in TensorFlow 2.1 (see Section 2 for details)

• AVX-512 activated in processors used

• Optimized thread allocations (see Section 5 for details)

Configuration 2 (400 img/s): this is Configuration 1 with neural network optimization (see

Section 6).

Configuration 3 (540 img/s): this is Configuration 1+2 and multi-instancing, detailed in Section

7.

Configuration 4 (1040 img/s): this is Configuration 2 with neural network quantization (see

Section 8).

Configuration 5 (1700 img/s): this is Configuration 4 with multi-instancing.

90

400

540

1040

1700

0

200

400

600

800

1000

1200

1400

1600

1800

A-M-O A-M-TG-O A-M-TG-O-MU A-M-O-I A-M-O-I-MU

im
ag

e
s/

se
co

n
d

What to expect
(Dual socket, Intel Xeon 6252, TensorFlow v2.1)

White paper | Maximize inference for Intel platforms

 6

 What you need to know

TensorFlow: CPU optimized version

Intel has been collaborating for several years with Google to optimize TensorFlow performance

for deep learning training and inference on Intel Xeon processors using oneAPI Deep Neural Network

Library or oneDNN1 (formerly MKL-DNN). To improve performance, it is critical in most instances to

install TensorFlow with oneDNN embedded. In the past this was a non-trivial operation but is now

relatively easy to do using the many methods explained in this Intel webpage2. In this whitepaper, we

used Anaconda, for its convenience and the way it enables multiple Python and TensorFlow versions to

coexist.

Processors

As we already stated, keeping track of all the hardware available to run inference and new versions

of this hardware can be complex. However, this task is easier with processors, as we can narrow down

key specifications for processors to essentially the following five: how many processors there are in the

server and the number of cores, the frequency, the register size and the specialized instruction set per

processor. Performance typically improves as these specifications increase or broaden, on condition

that data scientists follow the guidelines below.

1. CPU sockets

In datacenters and whether your code runs in a virtual machine (VM) or directly on a physical

system, it is important to know that most servers use two processors. The processors are connected, for

example, via the Intel Ultra Path Interconnect (UPI), while each processor has its own dedicated

memory. This specific topology needs to be handled carefully if you plan to optimize your Python code

because by default this code will often run randomly on either CPU (CPU0 or CPU1 in the diagram

below) with or without the dedicated memory for that processor. This can have a significant negative

impact on performance.

As a data scientist, one of the best techniques to boost your inference processing performance is to

run your code twice, each time on a different CPU while forcing that CPU to use its own dedicated

memory: see how in Section 7. To get even more performance, you can work at the CPU core level

which is also explained in detail in Section 7 of this document.

1 https://github.com/oneapi-src/oneDNN
2 https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-

guide.html

https://www.intel.com/content/www/us/en/artificial-intelligence/google-cloud-platform.html
https://github.com/oneapi-src/oneDNN
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://github.com/oneapi-src/oneDNN
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html

White paper | Maximize inference for Intel platforms

 7

Figure 2 - In the cloud or datacenter, a common hardware configuration is two processors, each on a socket and

physically linked together to get more performance and/or memory capacity per server. However, extracting

maximum performance from a two-socket server requires tuning that is explained later in this document.

To check in Linux whether your server is based on one or two processors, you can run the

lscpu command:

shell$ lscpu | egrep 'Socket'

Socket(s): 1

2. Physical cores and logical cores

The more Intel cores you have, the better. Nowadays, nearly all CPUs are multi-core: they contain

several processing units that can handle different tasks simultaneously. The physical cores allow

applications to divide up work for simultaneous processing, called “threads” in software. Most Intel

processors also include Intel® Hyper-Threading Technology, a hardware innovation that allows more

than one thread to run on each core. Having more threads means that more work can be done in

parallel. As of today, an Intel CPU offers two execution contexts per physical core. This means that one

physical core works like two logical cores to handle different software threads.

Proper handling of threads in deep learning is critical to extract top performance. For this, data

scientists have basically two options. The first is to use a library which allows multi-thread

programming. The second, which applies reasonably well to inference workloads, is to simply run your

Python code multiple times, a technique also used in this whitepaper.

To check how many physical and logical cores are running in a server or VM, and how they are

organized in the operating system, we recommend using the hwloc package which includes several

handy tools like lstopo.

shell$ sudo apt install hwloc

shell$ lstopo --no-caches --no-io --cpuset

For example, for a single socket with 18 cores, the physical and logical core organization is displayed

like this:

Machine (187GB) cpuset=0x0000000f,0xffffffff

 Package L#0 cpuset=0x0000000f,0xffffffff

 Core L#0 cpuset=0x00040001

 PU L#0 (P#0) cpuset=0x00000001

 PU L#1 (P#18) cpuset=0x00040000

…

White paper | Maximize inference for Intel platforms

 8

Figure 3 - Representation of cores numbering in a single socket

In a dual socket server with 24 dual cores, the first physical core number is 0 and the logical core

numbers for this physical core number are 0 and 48.

Machine (1511GB total) cpuset=0xffffffff,0xffffffff,0xffffffff

 NUMANode L#0 (P#0 755GB) cpuset=0x000000ff,0xffff0000,0x00ffffff

 Package L#0 cpuset=0x000000ff,0xffff0000,0x00ffffff

 Core L#0 cpuset=0x00010000,0x00000001

 PU L#0 (P#0) cpuset=0x00000001

 PU L#1 (P#48) cpuset=0x00010000,0x0

…

Figure 4 - Representation of cores numbering in a dual socket

3. Frequency

In general, a higher clock speed means a faster CPU frequency, and frequency measures the

number of cycles your CPU executes per second. This frequency is usually expressed in GHz (gigahertz).

A cycle is a period where billions of transistors within the processor switch on and off to execute

instructions (low-level calculations like arithmetic). For example, a CPU with a clock speed of 3.2 GHz

executes 3.2 billion cycles per second, assuming that multiple instructions are completed in a single

clock cycle; in other cases, one instruction might be handled over multiple clock cycles.

White paper | Maximize inference for Intel platforms

 9

4. Register size

The larger the register sizes are, the better. Depending on the generation of your CPU or the

nature of your virtual machine (whether in the cloud or not), you will have access to different “n-bits”

registers:

- 128 bits (SSE)

- 256 bits (AVX2)

- or 512 bits (AVX-512)

Between 2012 and 2017, most of the Intel Xeon E5 processors series (code name Sandy Bridge, Ivy

Bridge, Haswell and Broadwell) included the AVX and later the AVX2 instruction set with 256 bit wide

registers. With most commercial deep learning applications using 32 bits of floating-point precision

(FP32), each core of these processors could process up to 8 x 32 bits.

Figure 5 - Intel AVX2 representation

Launched late 2017, 1st Generation Intel Xeon Scalable Processors (code name Skylake)

introduced the AVX-512 instruction set with registers twice as large (512 bits) as those of AVX2 (256

bits), allowing the processing of up to 16 x 32-bit values. Additionally, these processors have FMA

(Fused Multiple Add operations, A=A*B+C). FMA is valuable for linear algebra-based machine learning

(ML) algorithms, deep learning, and neural networks (dot product, matrix multiplication).

Figure 6 - Intel AVX-512 representation

5. Specialized instruction set

Available since 2019, 2nd generation Intel Xeon Scalable Processors (code name Cascade

Lake) are currently the first processors to support Intel DL Boost technology. This new instruction set

(AVX512_VNNI) enables 8-bit multiplies with 32-bit accumulates with 1 instruction. This allows 4 x

more inputs compared to FP32 and a theoretical peak of 4 x more compute with only 1/4 of the

memory requirements.

https://software.intel.com/content/www/us/en/develop/articles/lower-numerical-precision-deep-learning-inference-and-training.html

White paper | Maximize inference for Intel platforms

 10

Figure 7 - Intel AVX-512 with Intel DL Boost representation

If you want to check your CPU capabilities quickly in Linux, run the following command:

shell$ grep -o 'avx[^]*' /proc/cpuinfo

avx

avx2

By using the Linux grep command above, you can quickly check how wide the registers are in your processor. The

current VM displays “AVX” and “AVX2” which mean 128- and 256-bits wide registers.

To get details on the CPU model on which you are running your deep learning workload,

execute this command in Linux:

shell$ cat /proc/cpuinfo | grep "model name" | head -1

If the output looks like the example below, enter the CPU model (6252 in this example) in the

Intel CPU database at ark.intel.com to retrieve its specification.

model name : Intel(R) Xeon(R) Gold 6252 CPU @ 2.10GHz

If the output does not explicitly mention a processor model but looks like the example below, it

means you are running in a virtual machine. You will need to consult your cloud service provider

website or ask your server administrator to get details on the processor specification.

model name : Intel Core Processor (Haswell, no TSX)

https://ark.intel.com/content/www/us/en/ark.html#@Processors

White paper | Maximize inference for Intel platforms

 11

 Quick start

By following each of the steps in this section, a data scientist can expect a significant

performance gain from an optimized inference setup compared to a basic one. The level of this gain will

depend on attention to certain details relating to the TensorFlow version, a few lines of code, and the

underlying processor used for inference, as well as learning how to optimize a ResNet-50 neural

network.

Assuming you are using any server or VM running a recent version of Ubuntu (18.04 was used for

this tutorial) you can follow these steps to quickly see for yourself how to extract performance from any

Intel processor.

1. Installing prerequisite software (see Section 4 for more details)

To get the best performance, first set up an optimized software environment. This consists mainly

of installing the right version of TensorFlow and Python. We installed Anaconda, used Python 3.7, and

installed TensorFlow v2.1 through the Anaconda channel since that version is built using oneDNN

(formerly MKL-DNN). For more information, go to Section 4.

You will also need to install Bazel to build tools allowing pre-trained neural network

optimization, and numactl to “run processes with a specific NUMA scheduling or memory placement

policy”1. More precisely, numactl will enable us to launch multiple instances efficiently to improve

performance in Section 7. You can find installation information for the software described above as

follows:

- TensorFlow here2

- Anaconda and Linux here3

- Bazel here4

- For numactl, see below

shell$ sudo apt install numactl --yes

2. Tune your TensorFlow code adding os lib + ConfigProto (see Section 5 for more details)

Our baseline requires the thread allocations. To perform better, TensorFlow must be aware of

the physical cores in your server and how to parallelize the workflow. Add this information directly in

your Python code using the os library.

• Find the number of physical cores:

shell$ lscpu | grep 'Core(s) per socket:'

1 https://linux.die.net/man/8/numactl
2 https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-

installation-guide.html
3 https://docs.anaconda.com/anaconda/install/linux/
4 https://docs.bazel.build/versions/master/install-ubuntu.html

https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://docs.anaconda.com/anaconda/install/linux/
https://docs.bazel.build/versions/master/install-ubuntu.html
https://linux.die.net/man/8/numactl
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://docs.anaconda.com/anaconda/install/linux/
https://docs.bazel.build/versions/master/install-ubuntu.html

White paper | Maximize inference for Intel platforms

 12

• Add these lines to your Python code and put in your number for #number of physical

cores (you can use the code in Appendix B as an example):

import os

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_SETTINGS"] = "1"

os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"

if FLAGS.num_intra_threads > 0:

 os.environ["OMP_NUM_THREADS"]= #number of physical cores

• Add the following lines to your code to configure the session (you can use the code in

Appendix B as an example):

configuration = tf.compat.v1.ConfigProto()

configuration.intra_op_parallelism_threads = #number of physical cores

configuration.inter_op_parallelism_threads = 1

configuration.inter_op_parallelism_threads = 2 # for ResNet101

tf.compat.v1.Session(graph=model_graph, config= configuration)

3. Optimize your neural network (see Section 6 for more details)

• Clone a new TensorFlow folder in your working directory.

• Copy/paste your TensorFlow frozen graph in the “/tensorflow“ folder. Our model was

named “resnet50_fp32_pretrained_model.pb”. Use your own model name in the following

commands.

If you want, you can download our model by running:

shell$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

• Run:

shell$ bazel build tensorflow/tools/graph_transforms:summarize_graph

• Run:

shell$ bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --

in_graph=resnet50_fp32_pretrained_model.pb

The command above will return information. The information that you will need has been

underlined in the example output below:

Found 1 possible inputs: (name=input, type=float(1), shape=[?,224,224,3])

No variables spotted.

Found 1 possible outputs: (name=predict, op=Softmax)

• Run:

shell$ bazel build tensorflow/tools/graph_transforms:transform_graph

https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb
https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

White paper | Maximize inference for Intel platforms

 13

• Build your optimized model (replace resnet50_fp32_pretrained_model.pb by your model

name):

shell$ bazel-bin/tensorflow/tools/graph_transforms/transform_graph \

--in_graph=resnet50_fp32_pretrained_model.pb \

--out_graph=optimized_resnet50_fp32_graph.pb \

--inputs='input' \--outputs='predict' \

--transforms='strip_unused_nodes remove_nodes(op=Identity,

op=CheckNumerics) fold_constants(ignore_errors=true) fold_old_batch_norms

fold_batch_norms'

• Check the TensorFlow Graph Tool for more information.

4. Run two or more instances and check results (see Section 7 for more details)

• As running multiple instances is more complex than the optimizations described so far, go

to III. How to launch multiple instances (summary) for a quick tutorial. The first two parts

of Section 7 may also help you better understand and succeed. With multiple instances, we

achieved up to 6X better performance compared to our baseline.

5. Quantize your model to get the highest level of performance (see Section 8 for more details)

Some CPUs like the latest 2nd Gen Intel Xeon Scalable Processors (Cascade Lake) support INT8

computations and can infer efficiently on a quantized model. If your processors have this capability,

consider quantization of your model. By quantizing it, you will experience only a small loss in accuracy

(0.07% in our case) but gain a substantial improvement in performance: up to 3X in our case1.

Quantizing a model is not as easy as optimizing it, and there is no quick or generally applicable tutorial

for quantization. Look at Section 8 to learn more about quantization and for a specific tutorial showing

how we quantized our model.

1 Inference with dummy data. Throughput with optimized Resnet50 fp32 and multiple instances: 540

images/seconds. Throughput with optimized Resnet50 int8 and multiple instances: 1700

images/seconds with 0.07% of accuracy loss. Setup: Appendices C

White paper | Maximize inference for Intel platforms

 14

 Set up your environment

In this section, you will learn how to setup your environment to achieve the best performance

possible. To let data scientists take advantage of many Intel processors over a broad range of deep

learning frameworks, including TensorFlow, Intel developed a library named Intel® MKL-DNN (Math

Kernel Library for Deep Neural Networks), now part of a wider development initiative named oneDNN

(GitHub here1). Optionally, oneDNN can be included while compiling TensorFlow. Many other ways to

install TensorFlow with enhanced user-friendliness are also available: pip, prebuild container images, or

Anaconda package manager, for example. Details of all options are given in this link2. In this whitepaper

you will use Anaconda with Python 3.7 and install TensorFlow through the Anaconda channel, although

others like the Intel channel could also be used. Both channels provide a TensorFlow version built using

the oneDNN primitives, which usually leads to better performance.

The conda environment uses a powerful dependency resolver mechanism. Keeping the

Python environment stable requires extreme caution when resolving any package

dependency conflicts.

First, we will start with the Linux package upgrade and installation:

Update your packages

shell$ sudo apt-get update && sudo apt-get upgrade --yes

Utilities

To run multiple instances (Section 7) and precisely allocate the different workflows efficiently

on each core of the CPU, you will need numactl. If you do not intend to do multi-instancing, you will not

need it.

numactl: installation

shell$ sudo apt install numactl --yes

Anaconda: download and install

In this white paper we decided to use Anaconda which offers the convenience of setting up a

specific new environment without overlapping with the existing one.

Anaconda: install required packages

shell$ sudo apt-get install libgl1-mesa-glx libegl1-mesa libxrandr2 libxrandr2

libxss1 libxcursor1 libxcomposite1 libasound2 libxi6 libxtst6 --yes

Anaconda: download

1 https://github.com/oneapi-src/oneDNN/
2 https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-

installation-guide.html

https://github.com/oneapi-src/oneDNN/
https://software.intel.com/en-us/articles/intel-optimization-for-tensorflow-installation-guide
https://github.com/oneapi-src/oneDNN/
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html

White paper | Maximize inference for Intel platforms

 15

shell$ wget https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-

x86_64.sh

Anaconda: installation

shell$ bash ~/Anaconda3-2020.02-Linux-x86_64.sh

Now follow the Anaconda installation procedure. At the prompt press ENTER, read the EULA,

type yes to accept the EULA, and confirm or change the installation path. Wait and enter yes to initialize

Anaconda3.

Important: close your shell and reopen it to let Anaconda modify your shell. Part of the

convenience of conda is that you can create, export, list, remove, and update

environments that have different versions of Python and/or packages installed in them.

The default environment name will be (base) and the name will be changed in your

shell depending on the environment you created and switched to. The example below

uses (base):

(base) user@hostname:~$

As we described above, we decided to use the environment functionality of Anaconda to avoid

overlapping with the existing one. Create and activate an environment named “py-3.7-tf-2.1” using the

conda tool.

Anaconda: create and activate environment named py-3.7-tf-2.1

shell$ conda create --name py-3.7-tf-2.1 python=3.7 --yes

shell$ conda activate py-3.7-tf-2.1

Now your shell should start with (py-3.7-tf-2.1) user@host

TensorFlow

You can install TensorFlow either from the conda channel or the Intel® channel. From

TensorFlow v1.9 onwards, Anaconda builds TensorFlow using Intel Math Kernel Library for Deep Neural

Networks (Intel MKL-DNN, now renamed oneDNN) primitives to deliver maximum performance in your

CPU1. The only difference between the two channels is that the update cadence is faster on the Intel®

channel. According to your preference for the channel, run either:

Anaconda: install Tensorflow from Anaconda channel

shell$ conda install tensorflow=2.1 --channel anaconda –yes

or

Anaconda: install Tensorflow from Intel® channel

shell$ conda install tensorflow -c intel

Check your installation by importing the TensorFlow library and displaying its version.

1 https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-

installation-guide.html

https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
https://repo.anaconda.com/archive/Anaconda3-2020.02-Linux-x86_64.sh
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html
https://software.intel.com/content/www/us/en/develop/articles/intel-optimization-for-tensorflow-installation-guide.html

White paper | Maximize inference for Intel platforms

 16

Anaconda: check TensorFlow version

shell$ python -c "import tensorflow as tf; print(tf.__version__)"

Should display -> 2.1.0

White paper | Maximize inference for Intel platforms

 17

 Tune your TensorFlow code

After having ensured that you are using an optimized version of TensorFlow, the next step to

accelerate inference is to make TensorFlow aware of the capabilities of the processor(s). This is

straightforward and is done in two steps: first, you query the server for the CPU information; second,

you add a few lines to your source code.

1. Enumerate your processor capabilities

The number of cores per socket inside your server is what matters. An easy way to collect this

information is to run the following command to list all the physical cores in the server.

shell$ lscpu -b -p=Core,Socket | grep -v '^#' | sort -u | wc -l

2. Map your server capabilities into your TensorFlow* code

Import the Python os library and set following environment variables which will be used by Intel

oneDNN to get optimal performance (this can be done inside the Linux shell using export). Add the

following lines to your Python code. If you do not know where to paste them in your code, use our

custom code (Appendix B) as an example.

import os

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_SETTINGS"] = "1"

os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"

if FLAGS.num_intra_threads > 0:

 os.environ["OMP_NUM_THREADS"]= #number of physical cores

When you have done this, you will need to configure your TensorFlow session through

ConfigProto, which sets the session parameters related to threads, core scaling and parallelism. Add

the following lines to your Python code. If you do not know where to paste them in your code, use our

custom code (Appendix B) as an example.

configuration = tf.compat.v1.ConfigProto()

configuration.intra_op_parallelism_threads = #number of physical cores

configuration.inter_op_parallelism_threads = 1

configuration.inter_op_parallelism_threads = 2 # for ResNet101

tf.compat.v1.Session(graph=model_graph, config= configuration)

Note:

Certain settings like KMP_BLOCKTIME or intra_op* / inter_op* can be optimized.

If you want to better understand those specific settings to set up the Intel library and

TensorFlow configuration, we recommend that you read this1 Intel web page.

1 https://software.intel.com/content/www/us/en/develop/articles/maximize-tensorflow-performance-

on-cpu-considerations-and-recommendations-for-inference.html

https://software.intel.com/en-us/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference
https://software.intel.com/content/www/us/en/develop/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html
https://software.intel.com/content/www/us/en/develop/articles/maximize-tensorflow-performance-on-cpu-considerations-and-recommendations-for-inference.html

White paper | Maximize inference for Intel platforms

 18

 Optimize your neural network

One of the most effective ways to achieve better performance while doing inference is to

optimize your neural network in advance. This optimization is possible because although training

computations in a neural network may require many nodes, some of these nodes are not involved in the

output calculations when doing inference. Therefore, you can remove them. Others can be simplified or

combined with other nodes.

By optimizing a ResNet-501, its inference performance was improved by up to 4X 2 without

affecting its accuracy. The performance increased from 90 images/seconds to 400 images/seconds,

which is clearly a substantial improvement.

 We wrote a tutorial on how to do this for the specific case of the ResNet-50 using the

TensorFlow tool Graph Transform. You should also be able to reuse that tutorial for other models.

1. Go to your TensorFlow folder (clone a new one in advance if you prefer)

Although you could do all the following operations in your current TensorFlow folder, we

recommend cloning a new one in your work directory to avoid any unfortunate mistakes. We used

TensorFlow 2.1 for this tutorial. Ensure that you use this version for your own cloned version of

TensorFlow.

2. Copy/paste your model in your “tensorflow” folder

Your model graph must be a frozen graph ‘.pb’ (protobuf) file. Instructions on how to freeze a

graph are readily available from different sources on the web. To check that you are in the right folder,

make sure it also contains a “WORKSPACE” file. In our case, the model file is:

resnet50_fp32_pretrained_model.pb

If you want, you can download it by running:

$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

3. If you have not already done so, install Bazel from the official Bazel web page

While running the following command, you may need to install another version of Bazel, so just

follow the recommendations. See the official web page here3.

4. Determine the input and output of your graph

While in the “tensorflow” folder, run:

$ bazel build tensorflow/tools/graph_transforms:summarize_graph

1 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb
2 Inference with dummy data. Throughput with basic Resnet50 fp32: 90 images/seconds

Throughput with optimized Resnet50 fp32: 400 images/seconds. Both accuracies are identical.

Setup: Appendices C
3 https://docs.bazel.build/versions/master/install-ubuntu.html

https://docs.bazel.build/versions/3.1.0/install-ubuntu.html
https://docs.bazel.build/versions/master/install-ubuntu.html

White paper | Maximize inference for Intel platforms

 19

Once “summarize_graph” has been built, you can determine the input and output of your graph

by running:

$ bazel-bin/tensorflow/tools/graph_transforms/summarize_graph --

in_graph=resnet50_fp32_pretrained_model.pb

Replace “resnet50_fp32_pretrained_model.pb” by your model name. The output of the

command above should look like the following:

Found 1 possible inputs: (name=input, type=float(1), shape=[?,224,224,3])

No variables spotted.

Found 1 possible outputs: (name=predict, op=Softmax)

Found 25612214 (25.61M) const parameters, 0 (0) variable parameters, and 0

control_edges

Op types used: 272 Const, 267 Identity, 53 Conv2D, 53 FusedBatchNorm, 49 Relu,

16 AddN, 2 Mul, 1 Add, 1 AvgPool, 1 MatMul, 1 MaxPool, 1 Pad, 1 Placeholder, 1

Reshape, 1 Softmax, 1 Sub

To use with tensorflow/tools/benchmark:benchmark_model try these arguments:

bazel run tensorflow/tools/benchmark:benchmark_model -- --

graph=resnet50_fp32_pretrained_model.pb --show_flops --input_layer=input --

input_layer_type=float --input_layer_shape=-1,224,224,3 --output_layer=predict

We have highlighted the inputs and outputs of our model. In our case, input=input and

output=predict. Make sure to remember these outputs (yours can be different than ours).

5. Optimize your model

Now you have all the information required to build your optimized model. First, build

“transform_graph” with Bazel:

$ bazel build tensorflow/tools/graph_transforms:transform_graph

Next, you can build your optimized model:

$ bazel-bin/tensorflow/tools/graph_transforms/transform_graph \

--in_graph=resnet50_fp32_pretrained_model.pb \

--out_graph=optimized_resnet50_fp32_graph.pb \

--inputs='input' \--outputs='predict' \

--transforms='strip_unused_nodes remove_nodes(op=Identity,

op=CheckNumerics) fold_constants(ignore_errors=true) fold_old_batch_norms

fold_batch_norms'

The argument in-graph refers to the model to optimize, and out-graph refers to the optimized

model that transform_ graph will create. The arguments inputs and outputs correspond to the inputs

and outputs determined at the previous step. Finally, transforms enumerates the optimizations

applied to the neural network. You can find the list of all the possible transformations on the GitHub

TensorFlow repository in the Graph Transform section1.

1 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md

https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md

White paper | Maximize inference for Intel platforms

 20

Note

strip_unused_nodes and remove_nodes are pruning operations. They remove all

nodes not used in the inference calculations.

fold_constants, fold_old_batch_norms, and fold_batch_norms are mathematical

optimizations.

You can add more optimization if you want but check the accuracy of the resulting

model.

6. Outputs of the optimization

This optimization improved inference performance on ResNet-501 by up to almost 4.5X 2. In

addition, the accuracies of the optimized and basic models are identical. Therefore, this optimization

should be done since it enhances the performance of your code without any drawbacks.

1 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb
2 Inference with dummy data. Throughput with basic Resnet50 fp32: 90 images/seconds

Throughput with optimized Resnet50 fp32: 400 images/seconds. Both accuracies are identical.

Setup: Appendices C

White paper | Maximize inference for Intel platforms

 21

 Execute your code multiple times

I. Why launch multiple instances

When the following optimization is combined with that of the previous section, overall inference

performance on ResNet-501 can be improved by up to 6X 2. Performance after the following

optimization showed a significant increase from 400 images/seconds to 540 images/seconds.

Moreover, there is no negative impact on accuracy.

Inferencing on a dataset is a perfectly parallelizable process because the final output does not

depend on the way the data are processed as long as each piece of data or datum is processed by the

whole algorithm. However, inference computations are often not as parallelizable (keep in mind the

difference between inferencing on a dataset and running inference computations on a datum).

Therefore, Python code running TensorFlow may not be able to take full advantage of multi-core

processors. The question is therefore, how can we parallelize the process of inferencing without unduly

parallelizing the computations to maximize the potential advantage of multiple cores?

The answer is to run multiple instances of TensorFlow and correctly allocate cores to each

instance. Running multiple instances simply means launching your code multiple times with each

instance inferencing on a delimited part of the dataset. Thus, each instance has its own data stream, and

therefore represents an independent inference stream.

Figure 8- 8 inference streams on 2 sockets each containing an Intel Xeon Scalable Processor

However, as we have pointed out previously, the allocation of cores must follow certain rules to

be fully efficient:

1. As you can see in Figure 8, cores allocated to each instance must be on the same

processor/socket. There are several reasons for this, including optimization of the

memory allocation to each instance or avoidance of the latency between the cores of

different sockets during computations.

2. Memory must be strictly allocated to its socket.

1 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb
2 Inference with dummy data. Throughput with single instance, optimized Resnet50 fp32: 400

images/seconds. Throughput with ideal number of instances, optimized Resnet50 fp32: 540

images/seconds. Both accuracies are identical. Setup: Appendix C

White paper | Maximize inference for Intel platforms

 22

3. A mapping of the abilities of parallelization of your program must be done to determine

the best configuration of cores/instances. An example of code to test this is provided

(Appendix A and Appendix B)

To reinforce these points, look at the following figures from our experimentations on

ResNet-501:

It is important to explain the figures in these graphs. The calculations are run on two 24-core

processors2. numactl enables us to either run our program on a single socket or on both. When

multiple instances are run, the code provided returns the performance of each instance and since they

are running simultaneously, the global performance is the sum of each single instance performance. As

the first and second graphs show, the process of inferencing is highly parallelizable since the

throughput on a double socket is exactly twice that of a single socket. Therefore, this method is

perfectly scalable. However, the computations that were run during inference on our ResNet-50 are not

so parallelizable; it is difficult for an instance to take advantage of more than 4 allocated cores. We can

use the formula below to find the number of instances to run to achieve the greatest efficiency:

(Number of cores) / (Ideal number of cores per instance) = (Number of instances to run)

1 Inference with dummy data on optimized ResNet-50 fp32. Accuracies are identical. Setup: Appendix C
2 Intel® Xeon® Gold 6252

Figure 9 Key measures in multi-instances

0

20

40

60

80

2 cores on socket 0
2 cores on socket 1

4 cores on socket 0
0 cores on socket 1

im
ag

e
s/

se
co

n
d

s
3°) Comparison between multisocket
instance and single socket instance

245

250

255

260

265

270

275

0 2 4 6 8 10 12 14 16 18 20 22 24

im
ag

e
s/

se
co

n
d

s

cores/instances

2°) Resnet50 global performance on a
single socket

350

450

550

650

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48

im
ag

e
s/

se
co

n
d

s

cores/instances

1°) Resnet50 global performance on double
socket

White paper | Maximize inference for Intel platforms

 23

However, the cores must not be allocated randomly to each instance. As we indicated earlier,

there are certain rules to follow to be as efficient as possible.

II. How to launch multiple instances (detailed)

1. Map your processor

To map your processor, run the following command:

shell$ lscpu

From all the data that is then displayed, note the following specifically:

CPU(s): 96

On-line CPU(s) list: 0-95

NUMA node0 CPU(s): 0-23,48-71

NUMA node1 CPU(s): 24-47,72-95

Ensure you have more than 1 core to work on. If this is not the case, there is no point in running

multiple instances.

It is important to highlight that a bi-socket server (two CPUs) is used in this example (the most

complex case). Each CPU has 24 physical cores that can each be split into 2 logical cores, which means

48 logical cores for each CPU. Consequently, the system detects the 96 logical cores of the two CPUs.

The system shows that these cores are numbered between 0 and 95, but most importantly it shows

which core belongs to which CPU. Thus, the cores numbered between 0 and 23, and between 48 and 71

belong to the CPU of the socket 0. The others belong to the CPU of the socket 1. You can therefore

deduce that logical core 0 and 48 result from physical core 0, logical core 1 and 49 result from physical

core 1, and so on. The same logic applies to the socket 1 CPU cores. The following picture shows how

this numbering applies.

Figure 10 Representation of the cores and logical cores

White paper | Maximize inference for Intel platforms

 24

2. Launch multiple instances

• Enabling your Python code to set environment variables dynamically

In this step, you will learn how to launch multiple instances to increase performance. First, you

need to modify your program to enable core allocation. More specifically, your code must be able to

dynamically allocate the cores to each instance. However, while the modifications (see below) may look

complex, they are in fact quite simple.

Earlier, you were instructed to add the following lines to your Python code. Now, the highlighted

part must be changed:

import os

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_SETTINGS"] = "1"

os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"

if FLAGS.num_intra_threads > 0:

 os.environ["OMP_NUM_THREADS"]= # number of physical cores

Delete these highlighted lines and replace them with the lines below:

arg_parser = ArgumentParser(description='Parse args')

arg_parser.add_argument('-k', "--kmp-affinity", help='Specify the kmp-affinity

to tune performances', dest="kmp_affinity",

default="granularity=fine,verbose,compact,1,0")

arg_parser.add_argument('-c', "--physical-core", help='Specify the number of

physical core', dest="physical_core", default=48, type=check_positive_number)

args = arg_parser.parse_args()

os.environ["KMP_AFFINITY"] = args.kmp_affinity

os.environ["OMP_NUM_THREADS"] = str(args.physical_core)

If you already parse arguments in your Python code, be sure to integrate these lines in your

parser. If you need further information about where to add them, example custom code is provided in

Appendix B. These lines enable you to set up certain environment variables dynamically when you

launch your Python code in the command line or via a Bash file. The variables to set up are the

KMP_AFFINITY environment variable and OMP_NUM_THREAD. You can also use your own approach here if

you prefer. As you can see, the KMP_AFFINITY default setting is the same as the previous one.

• Launching multiple instances via a Bash file

Create a Bash file to facilitate the mapping of the abilities of parallelization of your program. By

creating a Bash file, you will not need to copy and paste lines in your command line each time you want

to launch multiple instances.

White paper | Maximize inference for Intel platforms

 25

Create a Bash file and open it:

$ touch multisocket.sh

$ vim multisocket.sh

Add the shebang at the beginning of the file (yours might be different than ours) and copy-

paste these lines:

#!/bin/bash

For reference

numactl -N = --cpunodebind

-m = --membind

python -k = --kmp-affinity

-c = --physical-core

For 4 instances

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[0-11,48-59],explicit,verbose,compact,1,0" -c 12

&

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[12-23,60-71],explicit,verbose,compact,1,0" -c 12

&

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[24-35,72-83],explicit,verbose,compact,1,0" -c 12

&

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[36-47,84-95],explicit,verbose,compact,1,0" -c 12

&

The explanations for these commands are as follows:

• First, replace eval_image_classifier_inference.py by the name of your own

Python code file.

• nohup unbuffer enables you to run multiple commands at once and save their output

in a nohup.out file.

• numactl -N 0 -m 0 enables you to constrain your code to use specific components.

o -N 0 constrains your Python code to run on the CPU of the socket 0.

o -m 0 then constrains your code to use the memory of the socket 0: this must be

specified. Otherwise, if the cores of the socket 0 start to work with the memory

of the socket 1, it could lead to a non-negligible increase in the latency as

shown in Figure 9.

Concerning the arguments of the Python code, you added a few lines that enable you to set up

certain environment variables in the command line. The settings granularity=thread and

explicit,verbose,compact,1,0 are recommended for running TensorFlow. Note also the addition of

proclist=[0-11,48-59] and its variants (the values change at each command line) which refer to the

logical cores allocated to each specific instance. The values of this setting are critical to achieve better

performance. As you can see, in each case the range of logical cores to use is associated with its

White paper | Maximize inference for Intel platforms

 26

“sibling” range of logical cores. Thus, the range “0-11” is associated with the range “48-59”, and so on.

The goal is to have the logical cores of each range on the same socket.

Finally, -c 12 refers to the number of physical cores to use to run the instance. As determined

earlier, the best setting with ResNet-50 was to use 4 cores per instance. You can see what such

commands might look like in Appendix A.

Note: you must adapt proclist=[0-11,48-59], -c 12, and -N 0 -m 0 to your own setup!

Activate your conda environment (Section 4) if you have not already done so and then launch

multiple instances:

$ conda activate py-3.7-tf-2.1

$./multisocket.sh

3. Map your performance

Mapping your code performance consists of finding the ideal number of cores per instance. As

an example, to map the performance of a ResNet-501 with the codes provided in Appendix A and

Appendix B, do the following:

• Follow the tutorial in Section 9 - With provided code.

• Launch your code for a given number of instances.

• Check your results by opening nohup.out. The performance of each instance is

measured in images/seconds. Since all the instances were running simultaneously, you

can calculate the overall performance simply by summing up the performance of each

instance.

• Change the number of instances by editing the Bash file and iterate to find the ideal

number of cores per instance.

4. Apply this method to a real case

When you apply this method, it is important to use a separate data stream for each instance. If

this is not done, each instance will have the same data stream and will do inference on the same data.

Consequently, your performance will be far worse than a basic launch of your program since you are

asking each instance to process the same data.

To make multiple separate data streams you can proceed in the following way:

1. Divide your dataset in as many subsets as the number of instances you want to run.

Note that each subset needs to contain unique data not shared by other subset to avoid

processing the same data multiple times. Dividing the dataset in unique subsets can be

done easily with a Python code.

2. Enable your Python code to take the subset to process as an argument. This can be

done by adding an argument to your parser. It might look like this:

arg_parser.add_argument('-d', "--dataset", help='Specify the dataset to

process', dest="dataset", default=””)

1 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

White paper | Maximize inference for Intel platforms

 27

3. Change the Bash file (called “multisocket.sh” in our tutorials) and add the argument of

the subset. Each instance must process a different subset than all the others. It might

look like this:

#!/bin/bash

#For 12 instances

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[0-3,48-51],explicit,verbose,compact,1,0" -c 4 -d

subset1/ &

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[4-7,52-55],explicit,verbose,compact,1,0" -c 4 -d

subset2/ &

.

.

.

This concludes the section on how to launch multi-instances to process a dataset more quickly.

III. How to launch multiple instances (summary)

• Map your processor(s) by running

shell$ lscpu

• Your command will return information. The information that matters is the following:

CPU(s): 96

On-line CPU(s) list: 0-95

NUMA node0 CPU(s): 0-23,48-71

NUMA node1 CPU(s): 24-47,72-95

Ensure you have more than 1 core to work on. If this is not the case, there is no point in

running multiple instances.

• Previously, in Section 5 you were instructed to add the following lines to your Python code.

Delete the highlighted part:

import os

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_SETTINGS"] = "1"

os.environ["KMP_AFFINITY"]= "granularity=fine,verbose,compact,1,0"

if FLAGS.num_intra_threads > 0:

 os.environ["OMP_NUM_THREADS"]= # number of physical cores

and replace it by the following lines (you can reorganize your code if you prefer):

arg_parser = ArgumentParser(description='Parse args')

White paper | Maximize inference for Intel platforms

 28

arg_parser.add_argument('-k', "--kmp-affinity", help='Specify the kmp-

affinity to tune performances', dest="kmp_affinity",

default="granularity=fine,verbose,compact,1,0")

arg_parser.add_argument('-c', "--physical-core", help='Specify the number

of physical core', dest="physical_core", default=48,

type=check_positive_number)

args = arg_parser.parse_args()

os.environ["KMP_AFFINITY"] = args.kmp_affinity

os.environ["OMP_NUM_THREADS"] = str(args.physical_core)

• To launch two instances (without creating a Bash file here), use one of the following

approaches.

o For a double socket, run the following (adapt the commands to your setup):

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py

-k "granularity=thread,proclist=[0-23,48-71],explicit,verbose,compact,1,0"

-c 24 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py

-k "granularity=thread,proclist=[24-47,72-95],explicit,verbose,compact,1,0"

-c 24 &

o For a single socket, run the following (adapt the commands to your setup):

nohup unbuffer python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[0-11,48-59],explicit,verbose,compact,1,0" -c

12 &

nohup unbuffer python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[12-23,60-71],explicit,verbose,compact,1,0" -c

12 &

• In the lines above you must adapt the proclist argument to your own configuration

(brought to light by running lscpu). If you need to better understand the underlying logic of

the arguments, refer to first two parts of this section for more details. Also, change the

Python code name to the name of your own Python code.

• Now that you know how to launch multiple instances, you can map your model

performance to determine the best number of cores per instance. Note that if you are

working on a CPU with more than 8 cores, 2 instances is rarely the best number of

instances.

• You should also look at:

I. How to launch multiple instances (detailed) - 4.Apply this method to a real case to

learn how to process real data with this method.

White paper | Maximize inference for Intel platforms

 29

 Quantization

A further way to increase your inference performance is to infer on a quantized model.

Quantization is the process of reducing the precision of the numerical format used in the neural

network computations. In deep learning, it is generally done by converting FP32 models into INT8 or

BF16 models. Quantization allows you not only to shrink the size of your models, but also to boost their

performance. It also has been shown that accuracy is almost unaffected by a properly done

quantization. There are multiple ways of quantizing a model. You can either perform a post-training

quantization or a quantization aware training. Both methods have pros and cons. However, since we are

not discussing training in this paper, we will assume a choice of post-training quantization.

There are many post-training quantization techniques. TensorFlow offers the following ones:

• Post-training float16 quantization

• Post-training int8 dynamic range quantization

• Post-training int8 quantization

To increase performance when inferencing, your processors must support hardware

acceleration for INT8 like the latest Intel Xeon SP processor (code name Cascade Lake) does. Be sure to

check your hardware for this support.

Quantization is not a fully automated process yet. No tool currently available can guarantee to

fully efficiently quantize any existing neural network. However, this paper gives you a non-exhaustive

state of the art of the different ways to quantize your neural network to help you quantize your model

effectively. Note that some tools are designed to produce models specially optimized for specific types

of devices, like TensorFlow Lite for mobile devices. Therefore, it is important to define your final use

case before choosing a tool to quantize your model.

In this paper, the Intel quantization tool API was used to quantize a ResNet-501 and we

therefore include a tutorial showing how to do it. The goal of our approach in this paper is to show you

how powerful the efficient quantization of your model can be.

Quantize with TensorFlow tools

For quantization with TensorFlow, most resources currently focus on TensorFlow Lite. However,

the TensorFlow Lite tool produces a “.tflite” model that is optimized for mobile devices rather than for

x86 CPUs. During the recent years, TensorFlow has released many other converting tools that keep

models in the “.pb” format. The tool maintained in the last version of TensorFlow (currently 2.1) is the

Transform Graph tool. Even though that tool is now starting to be deprecated for quantization, we will

present it as it could suit your need.

Quantize using TensorFlow Lite
TensorFlow Lite is an open source deep learning framework specially designed for on-device

inference. It converts “.pb” models into “.tflite” models while optimizing them.

If your goal is to do inference on a server, you should not quantize with TensorFlow Lite. On a

server with x86 CPUs, the resulting “.tflite” file will give poorer performance than a classic “.pb” file.

1 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

White paper | Maximize inference for Intel platforms

 30

Moreover, TFLite does not currently take advantage of numerous cores. On the other hand, if your goal

is to do on-device inference, TensorFlow Lite will be the better choice. TensorFlow Lite takes energy

efficiency into account and outperforms “.pb” files on mobile devices. They are many tutorials

explaining how to quantize a model and as the tool is well designed, it requires very few programming

skills.

Quantize with TensorFlow Transform Graph
Previously, we showed you how to optimize your model by using Transform Graph. It is also

possible to quantize your model with this tool. The section Eight-bit Calculations1 shows explicitly how

to quantize with Transform Graph. However, this tool starts to be deprecated and, as underlined under

the command line of the section Eight-bit Calculations1, “Only a subset of ops are supported, and on

many platforms the quantized code may actually be slower than the float equivalents, but this is a way of

increasing performance substantially when all the circumstances are right.”

The tool is nonetheless easy to use, and if it corresponds to your use case, you can try it. In the

right circumstances with a good fit for your model, it can save you time. Otherwise, other options exist.

Quantize with Intel tools

Intel has also developed tools to quantize models for TensorFlow. These tools are specifically

designed to take full advantage of Intel hardware, and therefore we recommend their use to achieve the

best performance. In this paper, we describe the Intel quantization tool API2 and OpenVINO. The Intel

quantization API was used to quantize the ResNet-503 model, and therefore a detailed tutorial is

included for that tool. OpenVINO is also an effective tool that meets many different needs.

Quantize using the Intel quantization tool API
This tool is under active development. Its goals are to:

• Unify the quantization tools calling entry

• Remove the Tensorflow source build dependency

• Transparent the model quantization process

• Reduce the quantization steps

• Seamlessly adapt to inference with Python script.

Quotation 1 https://github.com/IntelAI/tools/tree/master/api

1https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.

md#eight-bit-calculations
2 https://github.com/IntelAI/tools/tree/master/api
3 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

https://github.com/IntelAI/tools/tree/master/api
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#eight-bit-calculations
https://github.com/tensorflow/tensorflow/blob/master/tensorflow/tools/graph_transforms/README.md#eight-bit-calculations
https://github.com/IntelAI/tools/tree/master/api

White paper | Maximize inference for Intel platforms

 31

It is also advised to use the TensorFlow MKLDNN (oneDNN) enabled version since:

The Quantization Programming APIs are specified for Intel Optimizations for

TensorFlow based on the MKLDNN enabled build. This APIs call the TensorFlow

Python models as extension, and provide some special fusion rules, such as

fold_convolutionwithbias_mul, fold_subdivmul_batch_norms,

fuse_quantized_conv_and_requantize, mkl_fuse_pad_and_conv,

rerange_quantized_concat etc.

When you install TensorFlow from the official Anaconda command or link, the MKLDNN

(oneDNN) enabled version is usually installed by default and without further notification. For deeper

insight on the subject, please refer to Section 4.

Currently, this tool can quantize numerous models from the Model Zoo for Intel Architecture

and multiple official classification models present on TensorFlow’s list. The intention is that it will soon

be able to quantize any model, including custom models.

In our case the improvement in performance was significant. With our setup (Appendix C), the

throughput is 90 images/second with a classic FP32 ResNet-50. With our quantized ResNet-50, it is

1040 images/second. We even achieved 1700 images/second by running multiple instances (Section

7). Inference performance was improved by up to 18X.

Figure 11 - What you can expect from the different optimizations. A: AVX-512 activated, M: oneDNN (formerly MKL-

DNN) enabled, TG: Transform Graph optimized model, O: intra-threads and inter-threads optimized, I: INT8

quantized, MU: Multiple instances launched

Accuracy remains almost unaffected by quantization, with only 0.7% loss.

ResNet-50 FP32 Accuracy ResNet-50 INT8 Accuracy

Top 1 Top 5 Top 1 Top 5

0.7430 0.9188 0.7374 0.9155

90

400

540

1040

1700

0

200

400

600

800

1000

1200

1400

1600

1800

A-M-O A-M-TG-O A-M-TG-O-MU A-M-O-I A-M-O-I-MU

im
ag

e
s/

se
co

n
d

What to expect
(Dual socket, Intel Xeon 6252, TensorFlow 2.1)

White paper | Maximize inference for Intel platforms

 32

Now that you know how much you can gain by quantizing your neural network, we will show

you how to quantize a FP32 ResNet-501. First, create a directory “api_quantization_intel” to put all the

new files in, and a new conda environment to protect your existing environment from modification:

shell$ mkdir api_quantization_intel

shell$ cd api_quantization_intel/

shell$ conda create --name py-3.7-tf-1.15-intel python=3.7

shell$ conda activate py-3.7-tf-1.15-intel

Install the right version of TensorFlow and the intel-quantization toolkit:

shell$ conda install tensorflow=1.15.0 -c intel

shell$ conda install -c intel intel-quantization

Check that you installed the right version of TensorFlow (1.15.0):

shell$ python -c "import tensorflow as tf; print(tf.__version__)"

shell$ python -c "import tensorflow;

print(tensorflow.pywrap_tensorflow.IsMklEnabled())"

Download the Model Zoo directory and check its version:

shell$ git clone https://github.com/IntelAI/models.git models && cd models

shell$ git checkout v1.5.0

Download the quantization tool repository and the FP32 ResNet-50 pretrained model:

shell$ cd ../

shell$ git clone https://github.com/IntelAI/tools.git quantization && cd

quantization

shell$ cd api/models/resnet50

shell$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/resnet50_fp32_pretrained_model.pb

shell$ cd ../../../

Finally, quantize your model:

shell$ python api/examples/quantize_model_zoo.py \

--model resnet50 \

--in_graph

/PATH_TO_QUANTIZATION_DIR/api_quantization_intel/quantization/api/models/resne

t50/resnet50_fp32_pretrained_model.pb \

--out_graph

/<path_to_quantization_dir>/api_quantization_intel/quantization/api/models/res

net50/api_quantized_resnet50.pb \

--data_location /<path_to_data_dir>/ \

--models_zoo_location

/<path_to_quantization_dir>/api_quantization_intel/models

1 https://storage.googleapis.com/intel-optimized-tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb

https://storage.googleapis.com/intel-optimized-tensorflow/models/resnet50_fp32_pretrained_model.pb
https://storage.googleapis.com/intel-optimized-tensorflow/models/resnet50_fp32_pretrained_model.pb

White paper | Maximize inference for Intel platforms

 33

Note the need for data in the quantization command. You will need to pre-process the 2012

ImageNet validation dataset. Several tutorials for this are available on the web.

Quantize with OpenVINO™
OpenVINO™ is a toolkit developed by Intel, focused on image processing deep learning

algorithms. It is designed to ease deployment and improve deep learning inference at the edge. Unlike

training that almost always takes place in data centers, inference may also be done on an embedded

platform. OpenVINO™ is optimized for a wide list of supported hardware platforms for edge computing

deployment. If this corresponds to your use-case, we suggest that you try it.

OpenVINO™ is a complete tool that on its own would take an entire white paper to discuss.

OpenVINO™ is not only focused on inferencing with TensorFlow but can also be used with many other

deep learning frameworks too, including Caffe, MXNet, ONNX, and Kaldi. The OpenVINO™ toolkit comes

with a Deep Learning Model Optimizer, a Deep Learning Inference Engine, samples showing how to use

the Inference Engine and a set of tools to facilitate your work on your models.

However, quantization is one of its most relevant features. OpenVINO™ lets you quantize a large

number of models from supported frameworks. You can check the supported models here:

https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Introduction.html#supported_models

Performance is outstanding in most cases which makes OpenVINO™ a “must-try” inference

engine. For example, it achieves a performance of 971 images/second while inferencing on a Caffe

ResNet-50 on a single Intel Xeon Gold 5218T1. Even though this result is not directly comparable to our

results, considering that we are not working on the same framework, it is an example of the level of

performance that OpenVINO™ can achieve. The OpenVINO™ official website also offers many quality

tutorials that are easy to use, so we have not included any additional tutorials in this paper.

1 https://docs.openvinotoolkit.org/latest/_docs_performance_benchmarks.html#xeon-gold

https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Introduction.html#supported_models
https://docs.openvinotoolkit.org/latest/_docs_performance_benchmarks.html#xeon-gold

White paper | Maximize inference for Intel platforms

 34

 Performance checking

This section will show you two different ways to run a benchmark on a ResNet-50 using

TensorFlow and exploiting all the potential of your Intel hardware.

The first method is to use Model Zoo for Intel Architecture. We provide a quick tutorial on how to

use the Model Zoo tool on a ResNet-50 in this paper. With basic understanding of this tool, you should

be able to run a benchmark with any model that is supported by Model Zoo.

The second method is to check performance with the code provided in Appendix A and

Appendix B, which is a simplified version of Model Zoo. Unlike the tutorial for Model Zoo, the tutorial

for this second method will enable you to try multi-instance. You will have to modify the code to run

the benchmark on another model. No dataset is needed in either tutorial since both tools generate

dummy data.

With Model Zoo for Intel Architecture

Model Zoo for Intel Architecture enables you to test your model and see how it can benefit from

optimization and quantization. However, you will not be able to try multi-instance. To do so, go to With

provided codes.

Environment
There are multiple ways to install and use Model Zoo, e.g. via a container. If you prefer a

different way than the one described below, please visit the Model Zoo website.

1. Prerequisites

We used Anaconda for this tutorial and therefore you should also use it to make sure that you

get the results intended. Unlike the previous tutorials, some functions used to run the benchmark by

Model Zoo are not available in TensorFlow 2. For this reason, you will install TensorFlow 1.15 (latest

1.xx TensorFlow) instead. However, the optimizations made on your model using TensorFlow 1.xx are

also supported by TensorFlow 2.xx and you will be able to achieve similar performance with

TensorFlow 2. If you do not already have Anaconda installed, refer to Section 4. Create and activate a

conda environment, and install TensorFlow 1.15:

shell$ conda create --name py-3.7-tf-1.15 python=3.7

shell$ conda activate py-3.7-tf-1.15

shell$ conda install tensorflow=1.15 -c anaconda

2. Git clone Model Zoo and pre-trained ResNet-50 model

Now, clone the Model Zoo repository. If not already installed, install git. After cloning the Model

Zoo repository, you will see a directory called “models”: this will be your new working directory. Rename

it “work_dir” since it contains a directory also called “models”. Model Zoo is organized in a specific way

and we recommend that you take the time to see how.

shell$ git clone https://github.com/IntelAI/models.git

shell$ cp -r models/ work_dir/

shell$ rm -r models/

https://github.com/IntelAI/models
https://github.com/IntelAI/models.git

White paper | Maximize inference for Intel platforms

 35

Before running the command rm -r models, you should check if “work_dir/” contains the same

directories and files as “models/”.

You can choose any model that is supported by Model Zoo. For this tutorial, download into your

“models” directory the following ResNet-50 FP32 pre-trained model:

shell$ cd work_dir

shell$ wget https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_5/resnet50_fp32_pretrained_model.pb

Before continuing, check your TensorFlow version, and check if MKL is enabled to run the

inference:

shell$ python -c "import tensorflow as tf; print(tf.__version__)"

shell$ python -c "import tensorflow;

print(tensorflow.pywrap_tensorflow.IsMklEnabled())"

Running the benchmark
At this point, you should have all the files needed. You may have noticed that “work_dir”

contains 4 directories and various files. The directories relevant to this tutorial are “~/work_dir

/benchmarks/” and “~/work_dir /models/”.

Go to the benchmark directory:

shell$ cd benchmarks

In that directory, there is a Python file called “launch_benchmark.py”. To launch the benchmark,

run:

shell$ python launch_benchmark.py \

--in-graph ../resnet50_fp32_pretrained_model.pb \

--model-name resnet50 \

--framework tensorflow \

--precision fp32 \

--mode inference \

--batch-size=128 \

--num-inter-threads=2 \

--num-intra-threads=2 \

--warmup-steps=4 \

--data-num-inter-threads=2 \

--data-num-intra-threads=2

Going deeper with Model Zoo
Model Zoo comes with more than 20 different pre-trained neural networks that you can try:

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/model-zoo-ia.html

https://github.com/IntelAI/models/tree/master/benchmarks

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/model-zoo-ia.html
https://github.com/IntelAI/models/tree/master/benchmarks

White paper | Maximize inference for Intel platforms

 36

With provided codes

The custom code provided (Appendix B) is inspired by the Model Zoo code. However, it is more

compact to make it easier to understand and it enables multi-instancing, letting you reproduce the

conditions for the best performance. You may not be able to reproduce exactly the same levels of

performance as the ones in this paper, as you would need exactly the same setup (Appendix C).

However, you will be able to push your hardware to its limits in the same way that we did.

Create a working directory and activate the conda environment created in Section 4:

shell$ mkdir work_dir

shell$ cd work_dir/

shell$ conda activate py-3.7-tf-2.1

Create a Bash file and open it (called multisocket.sh in this tutorial):

shell$ touch multisocket.sh

shell$ vim multisocket.sh

Copy-paste the Bash code of Appendix A into the file. Adapt the code to your system; refer to

Section 7 if you do not know how to adapt it. Save and quit.

Create a Python file and open it (called “eval_image_classifier_inference.py” in this tutorial):

shell$ touch eval_image_classifier_inference.py

shell$ vim eval_image_classifier_inference.py

Copy-paste the Python code of Appendix B in the file. Replace the model name by yours (line

21, the INPUT_GRAPH argument). Save and quit. Then copy your model into “work_dir”.

shell$ cp <PATH TO YOUR MODEL>/your_model.pb ./

Open a second terminal and run:

shell$ top

The second terminal will show you how busy your CPU is, and you will be able to see when your

Python code finished executing. Now, in the first terminal, run the code:

shell$./multisocket.sh

Now, you should see a Python process consuming almost all your CPU capacity. Once the

Python code has finished executing (it should disappear from the top table), check your results in the

first terminal by running:

shell$ vim nohup.out

Scroll down, and at the end of the file, you should see multiple throughputs in images/second.

They correspond to the throughputs of the different instances. Sum them to get your total throughput.

White paper | Maximize inference for Intel platforms

 37

 Resources

Popular Deep Learning Frameworks: optimized version installation method

https://software.intel.com/en-us/frameworks/tensorflow

oneDNN GitHub

https://github.com/oneapi-src/oneDNN/

KMP setting details

https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-thread-affinity-

interface-linux-and-windows

[Quantization]

Low-Precision 8-bit Integer Inference with OpenVINO

https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Int8Inference.html

Accelerate Lower Numerical Precision Inference with Intel® Deep Learning Boost

https://software.intel.com/en-us/articles/accelerate-lower-numerical-precision-inference-with-intel-

deep-learning-boost

Get Started with Intel® Deep Learning Boost and the Intel® Distribution of OpenVINO™ Toolkit

https://software.intel.com/en-us/articles/get-started-with-intel-deep-learning-boost-and-the-intel-

distribution-of-openvino-toolkit

https://software.intel.com/en-us/frameworks/tensorflow
https://github.com/oneapi-src/oneDNN/
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-thread-affinity-interface-linux-and-windows
https://software.intel.com/en-us/cpp-compiler-developer-guide-and-reference-thread-affinity-interface-linux-and-windows
https://docs.openvinotoolkit.org/latest/_docs_IE_DG_Int8Inference.html
https://software.intel.com/en-us/articles/accelerate-lower-numerical-precision-inference-with-intel-deep-learning-boost
https://software.intel.com/en-us/articles/accelerate-lower-numerical-precision-inference-with-intel-deep-learning-boost
https://software.intel.com/en-us/articles/get-started-with-intel-deep-learning-boost-and-the-intel-distribution-of-openvino-toolkit
https://software.intel.com/en-us/articles/get-started-with-intel-deep-learning-boost-and-the-intel-distribution-of-openvino-toolkit

White paper | Maximize inference for Intel platforms

 38

 Table of figures

Figure 1 - What you can expect from the different optimizations. A: AVX-512 activated, M: oneDNN

(formerly MKL-DNN) enabled, TG: Transform Graph optimized model, O: intra-threads and inter-threads

optimized, I: INT8 quantized, MU: Multiple instances launched ..5

Figure 2 - In the cloud or datacenter, a common hardware configuration is two processors, each on a

socket and physically linked together to get more performance and/or memory capacity per server.

However, extracting maximum performance from a two-socket server requires tuning that is explained

later in this document. ..7

Figure 3 - Representation of cores numbering in a single socket ...8

Figure 4 - Representation of cores numbering in a dual socket ...8

Figure 5 - Intel AVX2 representation ..9

Figure 6 - Intel AVX-512 representation ...9

Figure 7 - Intel AVX-512 with Intel DL Boost representation ... 10

Figure 8- 8 inference streams on 2 sockets each containing an Intel Xeon Scalable Processor 21

Figure 9 Key measures in multi-instances ... 22

Figure 10 Representation of the cores and logical cores ... 23

Figure 11 - What you can expect from the different optimizations. A: AVX-512 activated, M: oneDNN

(formerly MKL-DNN) enabled, TG: Transform Graph optimized model, O: intra-threads and inter-threads

optimized, I: INT8 quantized, MU: Multiple instances launched ... 31

https://intel.sharepoint.com/sites/SMG-LeCafDuCoin-ITSParisFrance/Shared%20Documents/General/Intel%20Whitepaper%20Maximize%20inference%20performances%20on%20CPU%20with%20TF%20-%20CNDA%20rev0.1.docx#_Toc43814246
https://intel.sharepoint.com/sites/SMG-LeCafDuCoin-ITSParisFrance/Shared%20Documents/General/Intel%20Whitepaper%20Maximize%20inference%20performances%20on%20CPU%20with%20TF%20-%20CNDA%20rev0.1.docx#_Toc43814247

White paper | Maximize inference for Intel platforms

 39

 Appendices

Appendix A

Example of Bash script to launch multiple instances. This example is based on 2 CPUs, each

with 24 physical cores (48 logical cores).

#!/bin/bash

#For 12 instances

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[0-3,48-51],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[4-7,52-55],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[8-11,56-59],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[12-15,60-63],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[16-19,64-67],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 0 -m 0 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[20-23,68-71],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[24-27,72-75],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[28-31,76-79],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[32-35,80-83],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[36-39,84-87],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[40-43,88-91],explicit,verbose,compact,1,0" -c 4 &

nohup unbuffer numactl -N 1 -m 1 python eval_image_classifier_inference.py -k

"granularity=thread,proclist=[44-47,92-95],explicit,verbose,compact,1,0" -c 4 &

White paper | Maximize inference for Intel platforms

 40

Appendix B

A simplified version of Model Zoo for Intel Architecture to run inference on a ResNet-50 with

dummy data.

import os

import time

import numpy as np

from argparse import ArgumentParser

import tensorflow as tf

from tensorflow.python.platform import gfile

Environment Variables #####

os.environ["KMP_BLOCKTIME"] = "1"

os.environ["KMP_SETTINGS"] = "1"

Inference Variables #####

RESNET_IMAGE_SIZE = 224

BATCH_SIZE = 512

NUM_INTER_THREADS = 1

DATA_NUM_INTER_THREADS = 1

STEPS = 50

WARM_UP_STEPS = 4

INPUT_GRAPH = 'api_quantized_resnet50.pb'

def check_positive_number(value):

 if value:

 value = int(value)

 if value == 0 or value < 0:

 raise ArgumentTypeError("{} is not valid.".format(value))

 return value

arg_parser = ArgumentParser(description='Parse args')

arg_parser.add_argument('-k', "--kmp-affinity", help='Specify the kmp-affinity to tune

performances', dest="kmp_affinity", default="granularity=fine,verbose,compact,1,0")

arg_parser.add_argument('-c', "--physical-core", help='Specify the number of physical

core', dest="physical_core", default=48, type=check_positive_number)

args = arg_parser.parse_args()

os.environ["KMP_AFFINITY"] = args.kmp_affinity

os.environ["OMP_NUM_THREADS"] = str(args.physical_core)

DATA_NUM_INTRA_THREADS = args.physical_core

class eval_classifier_optimized_graph:

 """Evaluate image classifier with optimized TensorFlow graph"""

White paper | Maximize inference for Intel platforms

 41

############################# Running Inference ##############################

 def run(self):

 """run benchmark with optimized graph"""

 print("Run inference")

 data_config = tf.compat.v1.ConfigProto()

 data_config.intra_op_parallelism_threads = DATA_NUM_INTRA_THREADS

 data_config.inter_op_parallelism_threads = DATA_NUM_INTER_THREADS

 data_config.use_per_session_threads = 1

 infer_config = tf.compat.v1.ConfigProto()

 infer_config.intra_op_parallelism_threads = DATA_NUM_INTRA_THREADS

 infer_config.inter_op_parallelism_threads = NUM_INTER_THREADS

 infer_config.use_per_session_threads = 1

 data_graph = tf.Graph()

 with data_graph.as_default():

 print("Inference with dummy data.")

 input_shape = [BATCH_SIZE, RESNET_IMAGE_SIZE, RESNET_IMAGE_SIZE, 3]

 images = tf.random.uniform(input_shape, 0.0, 255.0, dtype=tf.float32,

name='synthetic_images')

 infer_graph = tf.Graph()

 with infer_graph.as_default():

 graph_def = tf.compat.v1.GraphDef()

 with tf.io.gfile.GFile(INPUT_GRAPH, 'rb') as input_file:

 input_graph_content = input_file.read()

 graph_def.ParseFromString(input_graph_content)

 tf.import_graph_def(graph_def, name='')

 # Definite input and output Tensors for detection_graph

 input_tensor = infer_graph.get_tensor_by_name('input:0')

 output_tensor = infer_graph.get_tensor_by_name('predict:0')

 data_sess = tf.compat.v1.Session(graph=data_graph, config=data_config)

 infer_sess = tf.compat.v1.Session(graph=infer_graph, config=infer_config)

 num_processed_images = 0

 num_remaining_images = (BATCH_SIZE * STEPS)

################################ Performance #################################

 iteration = 0

 warm_up_iteration = WARM_UP_STEPS

 total_run = STEPS

 total_time = 0

 while num_remaining_images >= BATCH_SIZE and iteration < total_run:

White paper | Maximize inference for Intel platforms

 42

 iteration += 1

 tf_filenames = None

 np_labels = None

 data_load_start = time.time()

 image_np = data_sess.run(images)

 data_load_time = time.time() - data_load_start

 num_processed_images += BATCH_SIZE

 num_remaining_images -= BATCH_SIZE

 start_time = time.time()

 predictions = infer_sess.run(output_tensor, feed_dict={input_tensor:

image_np})

 time_consume = time.time() - start_time

 print('Iteration %d: %.6f sec' % (iteration, time_consume))

 if iteration > warm_up_iteration:

 total_time += time_consume

 time_average = total_time / (iteration - warm_up_iteration)

 print('Average time: %.6f sec' % (time_average))

 print('Batch size = %d' % BATCH_SIZE)

 if (BATCH_SIZE == 1):

 print('Latency: %.3f ms' % (time_average * 1000))

 print('Throughput: %.3f images/sec' % (BATCH_SIZE / time_average))

if __name__ == "__main__":

 evaluate_opt_graph = eval_classifier_optimized_graph()

 evaluate_opt_graph.run()

White paper | Maximize inference for Intel platforms

 43

Appendix C

2.9x inference performance for image classification-ResNet-50

Config1: Tested by Intel as of 6/29/2020. 2 socket Intel Xeon Gold 6252 Processor, 24 cores HT On

Turbo ON Total Memory 1536 GB (12 slots/ 64GB/ 2666 Hz), BIOS:

SE5C620.86B.02.01.0010.010620200716 (0x400002c), Ubuntu 18.04.4 LTS 5.3.0-53-generic, Deep

Learning Framework: TensorFlow https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0,

ResNet50: https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb, BS=512, synthetic data, 1 instance/2

sockets, Datatype: FP32, Model Optimized : No (Section 6)

Config2: Tested by Intel as of 6/29/2020. 2 socket Intel Xeon Gold 6252 Processor, 24 cores HT On

Turbo ON Total Memory 1536 GB (12 slots/ 64GB/ 2666 Hz), BIOS:

SE5C620.86B.02.01.0010.010620200716 (0x400002c), Ubuntu 18.04.4 LTS 5.3.0-53-generic, Deep

Learning Framework: TensorFlow https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0,

ResNet50: https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb, BS=512, synthetic data, 1 instance/2

sockets, Datatype: FP32, Model Optimized : Yes (Section 6)

Config3: Tested by Intel as of 6/29/2020. 2 socket Intel Xeon Gold 6252 Processor, 24 cores HT On

Turbo ON Total Memory 1536 GB (12 slots/ 64GB/ 2666 Hz), BIOS:

SE5C620.86B.02.01.0010.010620200716 (0x400002c), Ubuntu 18.04.4 LTS 5.3.0-53-generic, Deep

Learning Framework: TensorFlow https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0,

ResNet50: https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb, BS=512, synthetic data, 12 instances/2

sockets (Section 7), Datatype: FP32, Model Optimized : Yes (Section 6)

Config4: Tested by Intel as of 6/29/2020. 2 socket Intel Xeon Gold 6252 Processor, 24 cores HT On

Turbo ON Total Memory 1536 GB (12 slots/ 64GB/ 2666 Hz), BIOS:

SE5C620.86B.02.01.0010.010620200716 (0x400002c), Ubuntu 18.04.4 LTS 5.3.0-53-generic, Deep

Learning Framework: TensorFlow https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0,

ResNet50: https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb, BS=512, synthetic data, 1 instance/2

sockets, Datatype: INT8 (Section 8)

Config5: Tested by Intel as of 6/29/2020. 2 socket Intel Xeon Gold 6252 Processor, 24 cores HT On

Turbo ON Total Memory 1536 GB (12 slots/ 64GB/ 2666 Hz), BIOS:

SE5C620.86B.02.01.0010.010620200716 (0x400002c), Ubuntu 18.04.4 LTS 5.3.0-53-generic, Deep

Learning Framework: TensorFlow https://github.com/tensorflow/tensorflow/releases/tag/v2.1.0,

ResNet50: https://storage.googleapis.com/intel-optimized-

tensorflow/models/v1_6/resnet50_fp32_pretrained_model.pb, BS=512, synthetic data, 12 instances/2

sockets (Section 7), Datatype: INT8 (Section 8)

END OF DOCUMENT

